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Abstract: Precise wind fields simulated by CFD models are used for many environmental and safety micro-meteorological
applications, such as dispersion modelling or wind potential assessment. Atmospheric simulations at local scale are
largely determined by boundary conditions, which are provided, for instance, by meso-scale models (e.g., WRF). In
order to improve the accuracy of the boundary conditions (BC), especially in the lowest levels more perturbed by high
resolution topography, data assimilation methods might be used to take available observations into account. Data assim-
ilation methods have been generally developed for larger scale meteorology and initial conditions. Among the existing
methods, the iterative ensemble Kalman smoother (IEnKS) has been chosen as it is independent of the atmospheric
model and it is able to handle non-linear operators. The IEnKS has been adapted to local scale atmospheric simulations
by taking BCs into account. This adapted version has previously been tested on a simple shallow-water model in 1D.
In the present study, we analyse the performances of the IEnKS in 3D with the CFD model Code Saturne using both
twin experiments and field observations over a realistic, very complex topography. We propose a method to determine
the first estimate of the control vector, which corresponds to the BCs, and to construct the associated background error
covariance matrix, from the statistical analysis of three years of WRF simulations. The IEnKS is proved to greatly
reduce the error and the uncertainty on the BCs and thus on the simulated wind field over the small-scale domain. The
IEnKS is also tested in urban conditions with observations provided by the Mock Urban Setting Test field campaign.
This study case allows to evaluate the possibility to assimilate either wind observations (speed and direction) or pollu-
tant concentration values. We present here the first results obtained in this urban configuration.

Key words: Data assimilation, local scale simulation, boundary conditions, CFD model, iterative ensemble Kalman
smoother, air quality modelling, MUST.

INTRODUCTION
Many environmental and safety micro-meteorological applications, such as dispersion modelling or wind
potential assessment require the accurate estimation of wind fields at local scale. These wind fields are
generally simulated with CFD models, such as Code Saturne (Archambeau et al., 2004), especially over
complex terrain (e.g., Blocken, 2014) and in urban area (e.g., Vardoulakis et al., 2003). The counterpart of
CFD models is the computational cost and the sensitivity to input data, and especially boundary conditions
(BC) (Yang et al., 2009). In addition to numerical tools, urban areas and prospective sites for wind en-
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Figure 1: One analysis cycle of the IEnKS. The matrix of anomalies A corresponds to the departure from the back-
ground zb, for each member of the background ensemble Eb. The goal is to find the weight vector (w) that defines
the best linear combination of the ensemble members. To do so, a cost function J̃ is iteratively minimised: for each
value of w, a new ensemble of BCs Eb′

, centred on z′, is generated using the transform method. The model and the
observation operator are applied to this ensemble, which gives an ensemble of simulated observations with mean ys

that can be compared to the observations y. The increment dy = y − ys is used in the estimation of the gradient
(∇J̃ ) and Hessian (H) of the cost function. The weight w is thus updated following Gauss-Newton algorithm until the
convergence criterion is reached, defined either on the increment ∆w or on the cost function. At the end of the analysis
cycle, we obtain the best estimate of the control vector za and the analysis ensemble Ea, with a spread related to the
uncertainty associated with the analysis.

ergy installation are generally equipped with some meteorological instruments, which provide observations
inside the wind parc or the urban canopy.

In order to combine CFD model and in situ observations, data assimilation (DA) methods adapted to
local scale simulations must be used. Up to now, the DA methods have generally been developed for larger
scale simulations and deal with initial conditions (e.g., Kalnay, 2003; Asch et al., 2016). Only a few studies
have used DA methods to correct the BCs for small scale simulations (e.g., Mons et al., 2017; Sousa et al.,
2018). Among existing DA methods, the most recent and efficient ones are variational ensemble methods,
and especially the iterative ensemble Kalman smoother (IEnKS) (Bocquet and Sakov, 2014). This method
has the advantage to be independent of the dynamical model and to handle non-linear analyses. The IEnKS
can be adapted to local scale atmospheric simulations by taking BCs into account. It has been previously
proven to converge and tested on a simple shallow-water model in 1D (Defforge et al., 2019b). The goal
of this study is to assess the ability of the adapted IEnKS to improve 3D wind simulations at local scale by
assimilating observations in the lower layer of the atmosphere.

In the present study, we consider two cases with the atmospheric module of the open-source CFD model
Code Saturne: one corresponds to a wind resource assessment study and the other to the pollution disper-
sion in urban area. In both cases, real observations are available: part of them are assimilated whereas the
remaining observations are used for validation.

METHODS
The iterative ensemble Kalman smoother (IEnKS)
The goal of DA is to optimally combine the information provided by the first estimate of the BCs – or back-
ground – and by the available observations within the domain. The iterative ensemble Kalman smoother is
an ensemble variational method based on the iterative minimisation of a cost function (Bocquet and Sakov,
2014). This cost function measures both the misfit between the control vector and its first estimate (the
background) and the distance between the observations and the projection of the control vector in the ob-
servation space, by the model and the observation operator. The background error is represented by an
ensemble of N members and the objective is to find the best linear combination of the ensemble members.
This means defining and minimising the cost function in the sub-space spanned by this ensemble (Fig. 1).
Similarly, the ensemble obtained at the end of the analysis cycle provides an error estimate of the analysis,
which is another advantage of the IEnKS compared to other DA methods. In the present study, it is used
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Figure 2: (left) Topography for the domain used in the first experiment and location of the three meteorological masts
(blue squares). (right) Representation of the Code Saturne domain containing the MUST array with the location of the
available meteorological instruments.

with Code Saturne to improve the accuracy of 3D stationary simulations through the correction of the con-
stant BCs.

First case: Wind resource assessment
We consider a domain which extends over 4km × 4km horizontally and up to 2030m vertically, above a
very complex topography (Fig. 2, left). A field campaign has been performed within this domain between
August and February 2007. The observations are available every 10 minutes at three meteorological masts
(M80, M, and P) shown with the blue squares in Figure 2 (left). We assimilate the observations of u and v
components of the wind provided by the two masts M and P at 30, 39, and 49 m above the ground (classical
cup anemometers and vanes usually available for wind farms). We compare the simulation results to the
observations provided by the mast M80 at 10, 25, 45, and 78 m (sonic anemometers).

The control vector corresponds to the BCs on wind (u and v), given for 20 profiles distributed around
the domain, each of them being defined in 21 vertical levels. The control vector thus contains 840 variables.

WRF simulations have been performed in the same region during three years. These simulations are
clustered in 50 classes according to the wind speed, the wind direction, and the departure of the WRF results
from the sonic observations. Only one CFD simulation is performed per class, for the most representative
date and time. For each representative situation, the background BCs are first estimated from WRF results
for this time. The IEnKS is used for each of these 50 situations to correct the BCs, more strongly in the
lower levels, by assimilating the available observations at the given date and time.

Second case: Atmospheric dispersion modelling
In this second case we use the observations provided by the nearly full-scale Mock Urban Setting Test
(MUST) conducted in septembre 2001 at the U.S. Army Dugway Proving Ground (DPG) Horizontal Grid
test site (Biltoft, 2001). Containers were aligned on a 12 by 10 grid over a 200m square area and each
container was 12.2m long, 2.42m wide, and 2.54m high. The trials consisted of 15-minutes release of a
tracer gas (propylene) from positions either within or immediately outside the containers array, at different
heights between 0.15m and 5.2m. Numerous instruments measured both meteorological variables (wind,
turbulence, etc.) and gas concentration during the trials (Fig. 2, right).

We focus here on the trial conducted on the 25th of September at 18h29, which corresponds to neutral
stability conditions. In this case, the BCs for the Code Saturne simulation is given by one profile of velocity
(u and v) and turbulent kinetic energy (k). The profile is located in the center of the southern border and
defined in 22 vertical levels. The control vector thus includes 66 variables. To estimate the background BCs,
we use observations of wind speed and turbulence provided by meteorological instruments a few hundred
meters outside of the containers array.

In this experiment, we assimilate the observations provided by 7 sonic anemometers located on the 6-m
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Figure 3: Histograms of the errors between sonic observa-
tions, provided by the mast M80, and the wind simulated
by WRF (green), by Code Saturne with BCs provided by
WRF (background, blue), and by Code Saturne with BCs
corrected by the IEnKS (analysis, orange). The mean er-
ror made by WRF (green), Code Saturne before (blue) and
after (orange) DA are also shown (stars).
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Figure 4: Mean absolute error (MAE, above) and root
mean square error (RMSE) of the simulated wind com-
ponents (u and v) and turbulent kinetic energy (k), be-
fore (blue) and after (orange) the analysis cycle of the
IEnKS. The errorbars show the standard deviation of the
background and analysis ensembles for the MAE and the
RMSE.

tower A (2m and 6m), the tripod V3 (1.15m), and the 5-m tower (1m, 1.8m, 2.6m, and 3.7m) in the DA
process. All the other observations are used for validation.

Estimation of the background ensemble
Because the cost function is minimised in the ensemble space, the definition of the background ensem-
ble is of primary importance. This ensemble represents the background error covariance matrix (B) and
it is equivalent to estimate this covariance matrix and then select the leading modes, i.e. the eigenvectors
associated with the largest eigenvalues. To estimate B, we decompose the covariances (Ci,j) as the prod-
uct of standard deviations and correlation coefficients: Ci,j = corrijσiσj , where corrij is the correlation
coefficient between the ith and the jth variables and σi is the standard deviation of the ith variable. Both
the correlation coefficients and the standard deviations are estimated from statistical analyses of the clima-
tology. In the first case, we use the three years of WRF simulations at the location of the Code Saturne
BCs to estimate the correlations and the variances of the wind components. In the second case, we use the
observations above the canopy provided by the MUST campaign during all the trials. Once the background
error covariance matrix is estimated, we construct the ensemble from the N − 1 leading modes to which is
added a N th member, necessary to ensure that the ensemble mean is equal to the background.

RESULTS
First case: Wind resource assessment
For each representative situation, we perform an analysis cycle of the IEnKS to assimilate the 30 obser-
vations of u and v provided by the masts M and P. The wind fields simulated with the analysis BCs thus
obtained are compared with the observations from the sonic anemometers of the third mast (M80). The re-
sults show that the IEnKS helps reduce the error for most of the situations, except in some cases for which
the background error is already small. For all the situations, the IEnKS converges in 4 to 6 iterations. We
also show that the use of the CFD model does not reduce much the error if the BCs are imprecise. However,
after a cycle of the IEnKS with 5 members, the distribution of the errors on the simulated wind field at the
location of the mast M80 is largely shifted toward smaller values and the mean error is nearly divided by 2
(Fig. 3).

To estimate the impact of DA in a context of wind potential assessment, we assume that a unique



wind turbine of 6MW is installed at the location of the mast M80. For each representative situation, we
consider the wind speed, at 78 m above the ground, given by: the sonic anemometer, WRF simulations,
Code Saturne simulations with the BCs provided by WRF (referred to as CSb), and Code Saturne simu-
lations with the BCs corrected by DA (referred to as CSa). The wind resource is obtained as an average
of the 50 power values, weighted according to the size of the classes, and compared to the one computed
from the measurements. The wind resource estimated with WRF results is underestimated by 30%, with
CSb it is underestimated by 42%, and with CSa by less than 10%. Moreover, the uncertainty on the wind
resource estimation is reduced from 4.7% with CSb to 1.3% with CSa. Consequently, the use of the IEnKS
to correct the BCs of the 50 representative situations allow to largely reduce the error of the wind potential
assessment as well as the uncertainty on this estimate.

Second case: Atmospheric dispersion modelling
The IEnKS is used with 5 members to assimilate the 14 observations of u and v in order to update the values
of wind and turbulence which define the BCs. The IEnKS converges in 4 iterations here. The wind fields
simulated with Code Saturne when the background and analysis BCs are prescribed are compared with all
the observations that are not assimilated. The mean absolute error (MAE) and the root mean square error
(RMSE) are computed for u, v, and k over the 14 observations available at this date within the urban canopy
(< 2m above the ground) (Fig. 4). In this case again, the IEnKS helps reduce the error on the simulated
values and to reduce the uncertainty. Further investigations will analyse the impact of data assimilation on
pollutant dispersion. Finally, we intend to assess the ability of the method to correct the boundary condi-
tions of wind and turbulence by assimilating observations of pollutant concentration.

CONCLUSION
In this study the IEnKS adapted to local scale atmospheric simulations is used to assimilate observations
near the ground. The method is tested in two different cases with field observations. In both cases the
IEnKS is proved to improve the correctness and the accuracy of the boundary conditions and thus of the
simulated wind field in operationally affordable conditions.
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